
PhysiGym: bridging the gap between the Gymnasium reinforcement

learning application interface and the PhysiCell agent-based model

software

Alexandre Bertin 1,2,5,∗,†, Elmar Bucher 3,†, Owen Griere2,5, Marcelo Hurtado 2,5, Heber
Rocha 3, Randy Heiland 3, Aneequa Sundus 3, Paul Macklin 3,‡, Vincent François-Lavet

4,‡, Emmanuel Rachelson 1,‡, and Vera Pancaldi 2,5,∗,‡

1CRCT, Université de Toulouse, Inserm, CNRS, Université Toulouse III-Paul Sabatier, Centre de
Recherches en Cancérologie de Toulouse, France

2ISAE-Supaéro, Toulouse, France
3Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA

4Department of Computer Science, VU Amsterdam, The Netherlands
5Equipe Labellisée LIGUE Contre le Cancer, France

∗Corresponding authors: alexandre.bertin@isae-supaero.fr, vera.pancaldi@inserm.fr
†These authors contributed equally to this work.
‡These authors contributed equally to this work.

September 16, 2025

Abstract

This paper presents PhysiGym, a framework that integrates agent-based biological simulation within stan-
dardized reinforcement learning environments. By integrating the agent-based modeling framework PhysiCell
with the Gymnasium API, we provide a flexible tool for exploring reinforcement learning strategies to control in
silico biological processes. We demonstrate PhysiGym’s potential with a case study where a deep reinforcement
learning algorithm guides a tumor microenvironment model toward an anti-tumoral state, ultimately achieving
tumour elimination. Our results highlight PhysiGym’s flexibility for AI-driven biological control and optimiza-
tion of dynamic treatment regimes.

1 Introduction

Biological systems are complex, dynamic, and often difficult to study in real life. In silico modeling aims to
mimic these systems, providing a controlled environment for exploring specific aspects of biological processes
and testing hypotheses. In particular, agent-based models (ABMs) provide a powerful framework for simulating
biological systems where agents (e.g. cells) interact dynamically based on predefined rules. These models are
used in oncology and immunology to study emerging behaviors in complex biological systems, with the potential
to propose novel therapeutic strategies [9, 10, 18].

Ordinary differential equations (ODEs) and agent-based models (ABMs) are widely used to simulate the
tumor microenvironment (TME). ODEs provide compact system-level descriptions, while ABMs capture spa-
tial and cellular heterogeneity at higher computational cost. For dynamic treatment regimes (DTRs), however,
simulation alone is insufficient: designing adaptive, sequential interventions requires a control framework. Re-
inforcement learning (RL), where an agent learns policies through interaction with an environment, offers such
a framework [2]. By modeling treatment regimes as a sequence of decisions, RL enables adaptive control of
biological simulations [4]. For efficient experimentation and policy learning, RL further requires a standardized
interface. To address this, we introduce PhysiGym, an interface that connects PhysiCell [6], an ABM frame-
work for multicellular simulations of tissues or cell cultures (tumor microenvironment, other disease tissues, or
bacteria colonies), with Gymnasium [20], a widely adopted RL application programming interface (API). Physi-
Cell enables flexible multiscale modeling of biological systems, coupled with a sophisticated underlying physics
simulator (the BioFVM diffusion transport solver [5]), while Gymnasium provides a structured framework for
training and evaluating RL policies.

1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2025. ; https://doi.org/10.1101/2025.09.18.677030doi: bioRxiv preprint 

https://orcid.org/0009-0000-7566-1979
https://orcid.org/0000-0002-2929-2460
https://orcid.org/0009-0004-6712-0864
https://orcid.org/0000-0002-5876-2644
https://orcid.org/0000-0002-7440-2905
https://orcid.org/0000-0001-6833-2341
https://orcid.org/0000-0002-9925-0151
https://orcid.org/0000-0002-8593-9740
https://orcid.org/0000-0002-8559-1617
https://orcid.org/0000-0002-7433-624X
mailto:alexandre.bertin@isae-supaero.fr
mailto:vera.pancaldi@inserm.fr
https://doi.org/10.1101/2025.09.18.677030
http://creativecommons.org/licenses/by/4.0/


The first implementation of RL on an ABM framework based on BioFVM was proposed by Zade et al.
[23], which applied Q-learning [22] to optimize Temozolomide treatment regimes for patients with glioblastoma
multiforme, a highly specific problem. More recently, Aif et al. [1] used PhysiCell as a complex (high-fidelity)
simulation environment for tumor growth, combined with a simple (low-fidelity) RL training environment of
coupled ordinary differential equations (ODE) to learn treatment strategies for solid tumors.

PhysiGym bridges PhysiCell and Gymnasium to provide a reproducible and scalable framework for integrating
agent-based simulations of biological systems with RL strategies. In the following we present PhysiGym’s
motivation and design, demonstrating how it directly connects ABMs and RL to control complex biological
systems. In particular, we focus on the tumor microenvironment, a biological system made up of cancer cells
and surrounding immune and stromal cells that engage in complex interactions and cross-talks, which is proven
to be crucial for an effective response to immunotherapy, an important therapeutic approach in an increasing
number of types of cancer.

2 Methods

2.1 PhysiGym design and implementation

PhysiCell is an ABM framework written in C++ and implemented to model multicellular systems based on
classical mechanics [6]. Cells are agents whose type determines the specific rule set that governs their behavior
and interactions with the other agents and the environment. Substrates, like oxygen or cytokines, can be modeled
with the integrated BioFVM diffusive transport solver [5]. In addition, intracellular models can be integrated
into cell agents [11, 15, 19] to model specific behaviors based on each cell’s environment and gene regulatory
networks. The extracellular matrix that surrounds cells in tissues can also be modeled as a mesh of fibers
for a more realistic representation of the cells’ physical environment [13]. Together, these components enable
the construction of ABMs that are spatially explicit in two or three dimensions, off-lattice, center-based, and
multiscale in both space and time [12].

RL is used to control discrete-time dynamical systems, which are typically modeled as Markov Decision
Processes (MDPs) [3, 16]. An MDP consists of four key elements:

1. S the state space, where s ∈ S represents a state of the environment (e.g., a vector or an image).

2. A the action space, where a ∈ A represents an action applied to the environment (e.g. drug dose).

3. T the transition model, which defines how the environment evolves. The transition model can be either
deterministic or stochastic. Formally, the next state noted s′ is given by s′ ∼ T (s, a) where s represents
the current state and a the action taken.

4. R the reward function, which evaluates whether an action was beneficial. Formally, r denotes the reward
obtained by taking action a in state s, i.e., r = R(s, a).

The objective is to find the policy that maximizes the expected discounted cumulative reward:

argmax
π∈Π

E

[
τ∑

t=0

γtrt | s0 = s, π

]
,

with s0 the initial state, π the policy, γ the discount factor, and τ the terminal timestep. In the RL community,
the Gymnasium RL API is widely used as a standard interface for MDPs, promoting code reuse and modularity
in RL algorithms and models.

PhysiGym bridges the gap between the PhysiCell ABM framework and the Gymnasium RL API by extending
the Python interpreter [21, 17] with PhysiCell. As a result, the ABM model is implemented in the same way as
standard PhysiCell models, using PhysiCell Studio [8] and C++.

Any model implemented in PhysiCell can be converted into a PhysiGym model. The interface between
PhysiCell and Gymnasium is based on the PhysiCell ”user parameter”, ”custom data variable”, and ”custom
data vectors” data constructs. Information can only be transferred over these variable types such as drugs, which
can easily be specified in PhysiCell Studio under the User Params and Cell Types / Custom Data tab. As a
minimum requirement, the user must define the parameter dt gym, which specifies the time interval at which
interactions with the environment occur, and the parameter time, a time tracker necessary to determine when
to update the environment. In addition, additional parameters can be defined to control the simulation, such as
drug administration, which can serve as actions. Similarly, other parameters can be designated to record specific
quantities of interest, which can then be used to construct the observations.

According to the transition function, for each episode (a complete sequence of states, actions, and rewards
from the start to the end of a trial), values from these data constructs can be modified without having to
recompile the source code. There are three additional functions to define the state space (read information from
the simulation): get cell for cell position, get microenv for substrate concentration, and get graph to retrieve
cell neighborhood information.

2

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2025. ; https://doi.org/10.1101/2025.09.18.677030doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.18.677030
http://creativecommons.org/licenses/by/4.0/


To extend the Python interpreter with PhysiCell, the main simulation loop, written in C++, was split
into three functions: physicell start, physicell step, and physicell stop, all of which can be called from
Python. The physicell start function initializes the PhysiCell model, while physicell stop terminates the
simulation. The physicell step function is responsible for advancing the environment by one time step based
on the action taken by the reinforcement learning agent. For most models, only physicell step needs to
be modified, e.g. to apply drugs to the ABM. Several additional C++ functions are exposed in Python to
facilitate data retrieval. These include functions to obtain custom variables, vectors, physicell get cell,
which provides a matrix containing information about each cell, such as its type, coordinates, and death status,
and physicell get microenv. All exposed functions are implemented in the C++ file physicellmodule.cpp,
for more details, consult the reference manual https://github.com/Dante-Berth/PhysiGym/blob/main/man/
REFERENCE.md.

By extending the necessary functions to obtain the desired control over the ABM and modifying the physicell step

function, users can compile the C++ code and integrate it with Python, particularly with the Gymnasium
API. This allows users to define physicell model.py, which implements a Gymnasium-compatible environ-
ment. Specifically, physicell model.py defines a child class of Gymnasium’s environment class, inheriting from
CorePhysiCellEnv which is specified in physicell core.py. CorePhysiCellEnv is the main class that takes
charge of the use of physicell start, physicell stop and physicell step which are model independent. This
class handles interactions with the Gymnasium framework. Users should modify physicell model.py to specify
the observation space, action spaces, and the reward, as well as any additional data they wish to store.

For an in-depth understanding, tutorials are provided and can be found at the PhysiGym GitHub home page.
Besides, pytest unit tests are included in the code base, and we use GitHub Actions for continuous integration.
PhysiGym was extensively tested for compiling and running on Linux, Windows Subsystem for Linux, and
macOS. Installation and troubleshooting how-tos, a modeling tutorial, an RL tutorial, and a reference manual
can be found at [https://github.com/Dante-Berth/PhysiGym/tree/main/man].

2.2 Implementation of a tumor microenvironment toy model 1

We developed a simplified tumor microenvironment (TME) model 1 to illustrate the potential uses of PhysiGym.
The model includes four cell types, four diffusible substrates, and a set of simple agent-based rules. At the initial
state, the total number of tumor cells is 512. And 128 cell 1 surrounds the tumor. Moreover the total number
of cell 1 and cell 2 is fixed at 128.

1. Cell types

• Tumor cells: proliferate (5 × 10−5 min−1), apoptosis (1 × 10−6 min−1), immotile, uptake anti- and pro-
tumoral factors. Necrosis, motility, and baseline secretion disabled.

• Cell 1: non-proliferative, mobile, uptakes pro-tumoral factor (10/min). Conditional rules allow secretion
of anti-tumoral factor and transformation into cell 2.

• Cell 2: non-proliferative, mobile, uptakes drug 1 (10/min). Conditional rules allow transformation into
cell 1 in presence of drug 1.

2. Substrates

1. Debris: produced by dead tumor cells, diffusion 1µm2/min, no decay. Acts as a signal for debris-related
rules.

2. Drug 1: decay 0.01/min, applied at boundaries, regulates cell 2 → cell 1 transformation.

3. Anti-tumoral factor: diffusion 1000µm2/min, decay 0.05/min, secreted conditionally by cell 1, en-
hances tumor apoptosis.

4. Pro-tumoral factor: diffusion 1000µm2/min, decay 0.1/min, can be suppressed by cell 1 and enhances
tumor survival.

3. Cell Hypothesis Rules

In tumor cells: pressure decreases cycle entry from 5e-05 towards 0 with a Hill response, with half-max 5 and
Hill power 3. pressure increases necrosis from 0 towards 0.0028 with a Hill response, with half-max 10 and Hill
power 3. anti-inflammatory factor decreases apoptosis from 1e-06 towards 0 with a Hill response, with half-max
5 and Hill power 10. pro-inflammatory factor increases apoptosis from 1e-06 towards 0.05 with a Hill response,
with half-max 1 and Hill power 2. dead increases debris secretion from 0 towards 0.25 with a Hill response, with
half-max 0.2 and Hill power 5. Rule applies to dead cells.

3

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2025. ; https://doi.org/10.1101/2025.09.18.677030doi: bioRxiv preprint 

https://github.com/Dante-Berth/PhysiGym/blob/main/man/REFERENCE.md
https://github.com/Dante-Berth/PhysiGym/blob/main/man/REFERENCE.md
https://github.com/Dante-Berth/PhysiGym/tree/main/man
https://doi.org/10.1101/2025.09.18.677030
http://creativecommons.org/licenses/by/4.0/


In cell 1 cells: pressure increases transform to cell 2 from 0 towards 1 with a Hill response, with half-max
11 and Hill power 4. anti-inflammatory factor decreases pro-inflammatory factor secretion from 10 towards 0
with a Hill response, with half-max 10 and Hill power 4.

In cell 2 cells: drug 1 increases transform to cell 1 from 0 towards 1 with a Hill response, with half-max
5 and Hill power 4.

This toy model highlights how the RL framework can control tumor progression by modulating the whole
microenvironment, rather than solely targeting cancer cell killing.

Figure 1: Toy model of the tumor microenvironment, representing interactions between cancer cells and two other distinct cell types
with specific behaviors, together with exchanged cytokines and different processes. ⊣ represents an inhibition, while → represents an
activation. The color of the arrows corresponds to the color of the cell producing the protein associated with the arrow. For instance,
cell 1 is in blue; thus, the arrow related to increasing apoptosis of the tumor is also in blue, as in cell 1.

2.3 Implementation of an RL approach to control the TME simulation

Our overall objective is to achieve complete tumor eradication while minimizing drug usage. The action is
dt ∈ [0, 1] what refers to drug 1 applied to the system. The action space is defined as:

A = [0, 1]

where 0 represents the minimum drug amount, and 1 represents the maximum drug amount added to the tumor
microenvironment. The reward function is defined as:

rt = α(ct−1 − ct)− β · dt

and it consists of two main components: the first term, α(ct−1 − ct), promotes a reduction in tumor size. In our
model, α = 0.0156 is a normalization coefficient that scales the tumor reduction term to be of similar magnitude
to the second component, β · dt, which penalizes drug usage. The parameter β = 0.2 controls the strength of
this drug penalty.

Increasing α or decreasing β leads the reinforcement learning algorithm to prioritize tumor reduction, po-
tentially at the expense of higher drug administration. Conversely, decreasing α or increasing β encourages the
agent to minimize drug usage, even if it means tolerating more tumor growth. In other words, tuning α and β
influences whether the agent prioritizes killing tumor cells or avoiding drug toxicity.

We propose two different observation spaces, depending on whether we consider the spatial aspect of the
simulation or not.

The first observation space, called scalars, is based on computing the cell count for each cell type and the
maximum value for each substrate. We denote by celli(t) the number of cells of type i, with i ∈ {1, 2}. Let
ct represent the number of cancer cells at time t, and let cinit denote the initial number of tumor cells (i.e., at

4

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2025. ; https://doi.org/10.1101/2025.09.18.677030doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.18.677030
http://creativecommons.org/licenses/by/4.0/


t = 0). We normalize each quantity by the relative variation of the number of cells with respect to the initial
number of cancer cells (arbitrarily set to 512). This is formalized by the function:

f(x) =
x− cinit
cinit

.

Thus, the observation state at time t is given by:

st = (f(cell1(t)), f(cell2(t)), f(c(t)),max(sub1,t), max(sub2,t), max(sub3,t), max(sub4,t))

where max(subj,t) represents the maximum amount of the substrate in the entire environment and subj,t denotes
substrate j at time t, with:

j =


0 debris

1 anti-inflammatory factor

2 pro-inflammatory factor

3 drug1.

The second observation space, called multi-channel cells & substrates, considers the spatial distribution of
cells and substrates via an image representation of the simulation state. A set of channels corresponds to a
specific cell type, while the other set of channels refers to the substrates. Substrates are chemical products
or extracellular proteins produced by cells or produced by the environment or chemical products added to the
environment, such as drugs. To reduce memory requirements, we reduce the shape of the original image given
by the PhysiCell Settings.xml file by discretizing the continuous environment onto a uniform grid. We also
compute ρx = ⌊ width

gridsizex
⌋ and ry = ⌊ height

gridsizey
⌋. In our environment, ρx = ρy because width = height = 512 and

gridsizex = gridsizey = gridsize = 64. The size of the bins is calculated by mapping the continuous coordinates
into discrete indices. Specifically:

xbin =

⌊
(x− xmin)

(xmax − xmin)
× (gridsizex − 1)

⌋
,

ybin =

⌊
(y − ymin)

(ymax − ymin)
× (gridsizey − 1)

⌋
.

This ensures that the continuous spatial domain is discretized into a grid of size gridsize × gridsize. If one or
more cells are present in a bin, we increment the count in the channel corresponding to the respective cell type.
Formally, for each cell:

• Determine its bin index (xbin, ybin).

• Let c ∈ 0, 1, 2 be the index associated with its cell type.

• Increment image[c, ybin, xbin] by
1

rxry
.

By dividing by ρxρy, we normalize the count so that the value in each bin represents an area contri-
bution, ensuring that our image values stay in the range [0, 1]. This produces an image tensor of shape
(num cell types, gridsize, gridsize), Thus, for our three cell types, we can represent the data by images, as
shown in figure 2.

For substrate channels, the process is similar but simpler, since substrate values are continuous. Using the
same (xbin, ybin) discretizations, we assign each bin the maximum substrate value observed in that bin. A min-
max normalization is then applied across the entire image for each substrate channel, bringing all values into
range [0, 1], which can be seen in figure 3.

An episode is truncated when the maximum limit of around 200 steps is reached, but it is also terminated
when there are no more tumor cells in the environment.

To solve our control problem, namely to kill as many cancer cells as possible while reducing drug use, we
chose Soft Actor-Critic (SAC) [7], which is a well-known RL algorithm designed for continuous control tasks.

We selected SAC for its sample efficiency, meaning its ability to learn effectively from a limited number of
interactions with the environment. Additionally, as a deep RL method, SAC can process various types of input
data, including images, by using Convolutional Neural Networks [14].

3 Results

We proposed a simplified TME simulation, and we used SAC to control it. We now describe our results when
applying PhysiGym in this specific scenario. As seen in figure 4, our RL policy is able to learn how to dose
the drug at each time step to eradicate cancer cells while minimizing the amount of drug used. We show the
discounted cumulative return in figure 4.

We compare two different state spaces: multi-channel cells & substrates and scalars.

5

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2025. ; https://doi.org/10.1101/2025.09.18.677030doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.18.677030
http://creativecommons.org/licenses/by/4.0/


Figure 2: Representation of different channels, each channel represents a cell type.

Figure 3: Representation of different channels; each channel represents a substrate.

Across different seeds, using the image-based state space (multi-channel cells & substrates) results in a more
consistent performance, with lower variance compared to the scalar state space. Furthermore, this representation
yields a higher expected discounted cumulative return overall. A divergence between the two state spaces is ob-
served after 500k steps, where multi-channel cells & substrates significantly outperform scalars. The image-based
state space exhibits a lower standard deviation, indicating a more robust and reliable representation compared
to scalars.

For both state spaces, we observe different mean episodic lengths. Each state space leads to different treat-
ment regimes.

Although the difference in discounted expected cumulative return after hundreds of thousands of steps is
slight, as seen in figure 4, there is a significant difference in episodic length between the two state spaces
(figure 5). We also see a greater standard deviation for the image-based state space compared to the scalars in
terms of episodic length, while in terms of the discounted expected cumulative return, we observe the opposite.
Taken together, these findings imply that using the multi-channel cells & substrates state space allows eliminating
the tumor in fewer steps, adjusting the treatment more robustly compared to the strategy that only uses the
scalars state space.

For the two different state spaces, almost the same amount of drug was administered (cf. figure 6), but
in terms of discounted cumulative return, the multi-channel cells & substrates state space performs better (cf.
figure 4). For both state spaces, we can observe two distinct phases:

• Phase 1 refers to the initial steps, where cell 1 changes into cell 2. The learned policy tries to administer

6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2025. ; https://doi.org/10.1101/2025.09.18.677030doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.18.677030
http://creativecommons.org/licenses/by/4.0/


Figure 4: Discounted cumulative return (Y-axis) versus cumulative interaction steps with the environment (X-axis) across three different
random seeds. The green line represents the expected discounted cumulative return for the image-based state space (multi-channel cells
& substrates), while the blue line represents scalars. The lighter green (respectively blue) shading indicates ±1 standard deviation
around the mean for multi-channel cells & substrates (respectively scalars).

Figure 5: Episodic length (Y-axis) versus cumulative interaction steps with the environment (X-axis) across three different random seeds.
The green line represents the mean episodic lengths for multi-channel cells & substrates state space, while the blue line represents scalars.
The lighter green (respectively blue) shading indicates ±1 standard deviation around the mean for multi-channel cells & substrates
(respectively scalars).

as much drug as possible to convert cell 2 back into cell 1. This strategy appears effective because, in
the early steps, there is greater pressure due to a higher number of cancer cells at the start.

• Phase 2 refers to the remaining steps. This regime continues until the killing rate of cell 1 exceeds the
division rate of tumor cells. Based on the environment dynamics, there are now enough cell 1 to kill

7

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2025. ; https://doi.org/10.1101/2025.09.18.677030doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.18.677030
http://creativecommons.org/licenses/by/4.0/


Figure 6: Representations of drug administration and outcomes for three dynamic treatment regimes at one specific episode: multi-
channel cells & substrates (green, total drug = 59.88), scalars (blue, total drug = 60.02), and random policy (red, total drug = 95.80).
Top row: drug amount per step for each regime. Bottom row: (left) cumulative sum of discounted cumulative return, (middle) number
of tumor cells, and (right) number of cell 2 cells over time.

the remaining tumors even if some cell 1 still convert into cell 2. This is explained by the fact that the
total killing effect over time is much greater than:

– the pro-inflammatory factor from cell 2,

– the pressure causing cell 1 to become cell 2,

– the division rate of the remaining tumor cells.

Finally, the multi-channel cells & substrates state space provides more detailed insights, enabling a better
treatment strategy that drastically reduces tumor size in fewer steps and gives a better discounted cumulative
return, which is why the episodes are shorter.

4 Discussion

Our experiments demonstrate that PhysiGym enables RL policies to effectively control a simplified tumor mi-
croenvironment by integrating ABMs into a standardized framework. The results highlight that the choice
of state representation shapes the learning process and the resulting treatment strategies. In particular, the
image-based representation of cells and substrates (multi-channel cells & substrates) consistently outperformed
the scalar representation, leading to higher cumulative returns and shorter episode lengths. This suggests that
retaining spatial information allows the RL agent to exploit biologically meaningful features that would otherwise
be lost in aggregated statistics. Such findings indicate that PhysiGym can serve as a platform to investigate how
the system’s representation can impact therapeutic control strategies in complex biological environments.

While encouraging, these results are constrained by the simplicity of the underlying model and the chosen
reward function. Real tumor-immune interactions involve greater heterogeneity, stochasticity, and multiscale
processes, 3D-model , and may require moving from 2D to 3D models, which can further challenge the robustness
of learned policies. Extending PhysiGym to richer biological models will therefore be essential to assess the
generalization capacity of these models. Another limitation is that our experiments relied on a single RL
algorithm (SAC). Although SAC is well-suited for continuous control, future work should investigate whether
alternative approaches can lead to further improvements.

Beyond technical aspects, PhysiGym raises important research directions at the interface of biology and
deep reinforcement learning. From a biological perspective, it provides a controlled testbed to hypothesize
about potential treatment strategies, to be later tested in-vitro, ex-vivo or in-vivo in pre-clinical models and,

8

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2025. ; https://doi.org/10.1101/2025.09.18.677030doi: bioRxiv preprint 

https://doi.org/10.1101/2025.09.18.677030
http://creativecommons.org/licenses/by/4.0/


ultimately, in clinical trials. From a computational perspective, PhysiGym enables systematic benchmarking of
RL algorithms on structured, biological environments. These opportunities highlight PhysiGym’s potential to
bridge simulation-based biology and decision-making AI in a reproducible and extensible manner.

5 Conclusion

PhysiGym provides a novel framework that bridges reinforcement learning with agent-based biological simula-
tions, enabling the study of dynamic treatment regimes in silico. Our results show that leveraging spatial repre-
sentations improves policy performance, underscoring the importance of biologically meaningful state spaces. By
making PhysiGym open-source and extensible, we aim to foster collaboration between computational scientists
and biologists, paving the way toward AI-driven strategies for personalized cancer therapy. We anticipate that
PhysiGym will serve as a valuable testbed for both communities to advance decision-support systems that could
translate into clinical practice in the future.

6 Code Management and Availability

PhysiGym is an open-source project, and contributions from the community are encouraged. New Physi-
Cell models can be integrated by defining the required cell types and interactions, ensuring compatibility
with PhysiGym’s step-based execution, exposing action and observation spaces in Python, and wrapping the
model with a Gymnasium-compatible environment. Source code, examples, and documentation are available at
https://github.com/Dante-Berth/PhysiGym.

Installation and troubleshooting how-tos, a modeling tutorial, and a RL tutorial, and a reference manual can
be found at [https://github.com/Dante-Berth/PhysiGym/tree/main/man].

7 Competing interests

No competing interest is declared.

8 Acknowledgments

A. B., V.P., and E. R. acknowledge funding from Region Occitanie and INSERM, Projet Emergence REACT. E.
B. received support from a Chateaubriand Fellowship of the Office for Science & Technology of the Embassy of
France in the United States. This study has been partially supported through the grant EUR CARe N°ANR-18-
EURE-0003 in the framework of the Programme des Investissements d’Avenir and an Eiffel Excellence doctoral
fellowship to M. H. This research was also supported in part by Lilly Endowment, Inc., through its support for
the Indiana University Pervasive Technology Institute.

9

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2025. ; https://doi.org/10.1101/2025.09.18.677030doi: bioRxiv preprint 

https://github.com/Dante-Berth/PhysiGym
https://github.com/Dante-Berth/PhysiGym/tree/main/man
https://doi.org/10.1101/2025.09.18.677030
http://creativecommons.org/licenses/by/4.0/


References

[1] S. Aif, M. Eiche, N. Appold, E. Fischer, T. Citak, and J. Kayser. Reinforcement failing guides the discovery
of emergent spatial dynamics in adaptive tumor therapy. Apr. 2025. doi: 10.1101/2025.04.08.647768.

[2] A. G. Barto, R. S. Sutton, and C. Watkins. Learning and sequential decision making, volume 89. University
of Massachusetts Amherst, MA, 1989.

[3] R. Bellman. A markovian decision process. Journal of mathematics and mechanics, pages 679–684, 1957.

[4] B. Chakraborty and S. A. Murphy. Dynamic treatment regimes. Annual review of statistics and its appli-
cation, 1(1):447–464, 2014.

[5] A. Ghaffarizadeh, S. H. Friedman, and P. Macklin. Biofvm: an efficient, parallelized diffusive transport
solver for 3-d biological simulations. Bioinformatics, 32(8):1256–1258, 2016.

[6] A. Ghaffarizadeh, R. Heiland, S. H. Friedman, S. M. Mumenthaler, and P. Macklin. PhysiCell: An openb
source physics-based cell simulator for 3-d multicellular systems. PLOS Computational Biology, 14(2):
e1005991, feb 2018. doi: 10.1371/journal.pcbi.1005991.

[7] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Kumar, H. Zhu, A. Gupta, P. Abbeel,
et al. Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905, 2018.

[8] R. Heiland, D. Bergman, B. Lyons, G. Waldow, J. Cass, H. L. da Rocha, M. Ruscone, V. Noël, and
P. Macklin. Physicell studio: a graphical tool to make agent-based modeling more accessible. Gigabyte,
2024:gigabyte128, 2024.

[9] J. A. Johnson, D. R. Bergman, H. L. Rocha, D. L. Zhou, E. Cramer, I. C. Mclean, Y. W. Dance, M. Booth,
Z. Nicholas, T. Lopez-Vidal, A. Deshpande, R. Heiland, E. Bucher, F. Shojaeian, M. Dunworth, A. Forjaz,
M. Getz, I. Godet, F. Kurtoglu, M. Lyman, J. Metzcar, J. T. Mitchell, A. Raddatz, J. Solorzano, A. Sundus,
Y. Wang, D. G. DeNardo, A. J. Ewald, D. M. Gilkes, L. T. Kagohara, A. L. Kiemen, E. D. Thompson,
D. Wirtz, L. D. Wood, P.-H. Wu, N. Zaidi, L. Zheng, J. W. Zimmerman, J. M. Phillip, E. M. Jaffee, J. W.
Gray, L. M. Coussens, Y. H. Chang, L. M. Heiser, G. L. Stein-O’Brien, E. J. Fertig, and P. Macklin. Human
interpretable grammar encodes multicellular systems biology models to democratize virtual cell laboratories.
Cell, July 2025. ISSN 0092-8674. doi: 10.1016/j.cell.2025.06.048.

[10] R. Laubenbacher, F. Adler, G. An, F. Castiglione, S. Eubank, L. L. Fonseca, J. Glazier, T. Helikar, M. Jett-
Tilton, D. Kirschner, et al. Toward mechanistic medical digital twins: some use cases in immunology.
Frontiers in Digital Health, 6:1349595, 2024.

[11] G. Letort, A. Montagud, G. Stoll, R. Heiland, E. Barillot, P. Macklin, A. Zinovyev, and L. Calzone. Physi-
BoSS: a multi-scale agent-based modelling framework integrating physical dimension and cell signalling.
Bioinformatics, 35(7):1188–1196, aug 2018. doi: 10.1093/bioinformatics/bty766.

[12] J. Metzcar, Y. Wang, R. Heiland, and P. Macklin. A review of cell-based computational modeling in cancer
biology. JCO Clinical Cancer Informatics, pages 1–13, Dec. 2019. ISSN 2473-4276. doi: 10.1200/cci.18.
00069.

[13] V. Noël, M. Ruscone, R. Shuttleworth, and C. K. Macnamara. Physimess - a new physicell addon for
extracellular matrix modelling. Gigabyte, 2024, Oct. 2024. ISSN 2709-4715. doi: 10.46471/gigabyte.136.

[14] K. O’shea and R. Nash. An introduction to convolutional neural networks. arXiv preprint arXiv:1511.08458,
2015.

[15] M. Ponce-de Leon, A. Montagud, V. Noël, A. Meert, G. Pradas, E. Barillot, L. Calzone, and A. Valencia.
Physiboss 2.0: a sustainable integration of stochastic boolean and agent-based modelling frameworks. npj
Systems Biology and Applications, 9(1):54, 2023.

[16] M. L. Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons,
2014.

[17] Python Software Foundation. Extending and embedding the python interpreter. https://docs.python.

org/3/extending/embedding.html, 2024. Accessed: 2024-02-07.

[18] L. H. Rocha, B. Aguilar, M. Getz, I. Shmulevich, and P. Macklin. A multiscale model of immune surveillance
in micrometastases gives insights on cancer patient digital twins. npj Systems Biology and Applications, 10
(1), Dec. 2024. ISSN 2056-7189. doi: 10.1038/s41540-024-00472-z.

10

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2025. ; https://doi.org/10.1101/2025.09.18.677030doi: bioRxiv preprint 

https://docs.python.org/3/extending/embedding.html
https://docs.python.org/3/extending/embedding.html
https://doi.org/10.1101/2025.09.18.677030
http://creativecommons.org/licenses/by/4.0/


[19] M. Ruscone, A. Checcoli, R. Heiland, E. Barillot, P. Macklin, L. Calzone, and V. Noël. Building multiscale
models with physiboss, an agent-based modeling tool. Briefings in Bioinformatics, 25(6), Sept. 2024. ISSN
1477-4054. doi: 10.1093/bib/bbae509.

[20] M. Towers, A. Kwiatkowski, J. Terry, J. U. Balis, G. De Cola, T. Deleu, M. Goulão, A. Kallinteris, M. Krim-
mel, A. KG, R. Perez-Vicente, A. Pierré, S. Schulhoff, J. J. Tai, H. Tan, and O. G. Younis. Gymnasium: A
standard interface for reinforcement learning environments, 2024.

[21] G. van Rossum. Extending and embedding the python interpreter. CWI Report CS-R9527, May 1995. URL
https://gvanrossum.github.io/Publications.html.

[22] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8:279–292, 1992.

[23] A. E. Zade, S. S. Haghighi, and M. Soltani. Reinforcement learning for optimal scheduling of glioblastoma
treatment with temozolomide. Computer methods and programs in biomedicine, 193:105443, 2020.

11

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 24, 2025. ; https://doi.org/10.1101/2025.09.18.677030doi: bioRxiv preprint 

https://gvanrossum.github.io/Publications.html
https://doi.org/10.1101/2025.09.18.677030
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Methods
	PhysiGym design and implementation
	Implementation of a tumor microenvironment toy model 1
	Implementation of an RL approach to control the TME simulation

	Results
	Discussion
	Conclusion
	Code Management and Availability
	Competing interests
	Acknowledgments

